Dynamics & Control


  • Pure Pursuit Lateral Controller (Kinematic Bicycle Model)
  • Stanley Lateral Controller (Kinematic Bicycle Model)
  • LQR Tracker with Feed Forward Term (Dynamic Bicycle Model)
  • Model Predictive Control (Dynamic Bicycle Model)
  • Coming more, stay tuned for future updates!
  • Reference

  • Vehicle Bicycle Model


    Kinematic Models: Kinematic models are simplifications of dynamic models that ignore tire forces, gravity, and mass. This simplification reduces the accuracy of the models, but it also makes them more tractable. At low and moderate speeds, kinematic models often approximate the actual vehicle dynamics.

    Dynamic Models: Dynamic models aim to embody the actual vehicle dynamics as closely as possible. They might encompass tire forces, longitudinal and lateral forces, inertia, gravity, air resistance, drag, mass, and the geometry of the vehicle. Not all dynamic models are created equal. Some may consider more of these factors than others. Advanced dynamic models even take internal vehicle forces into account. For example, how responsive the chassis suspension is.

    Reference Trajectory: The reference trajectory is typically passed to the control block as a polynomial. This polynomial is usually 3rd order, since third order polynomials will fit trajectories for most roads. We need to fit 3rd order polynomials to waypoints (x, y) in C++ using Eigen, and evaluate the output.

    Pure Pursuit Lateral Controller (Kinematic Bicycle Model)

    Pure Pursuit Geometry

    \(\theta\): heading of vehicle or yaw angle of vehicle
    \(\dot{\theta}\): rotation rate of vehicle or yaw rate of vehicle
    \(\delta_f\): front steering angle
    \(L\): wheelbase
    \(l_d\): look-ahead distance
    \(\alpha\): angle between the vehicle’s heading vector and the look-ahead vector
    \(e_{l_d}\): crosstrack error, \(e_{l_d}(t) = l_d sin(\alpha(t))\)
    \(\kappa\): path curvature
    \(v_x\): vehicle speed in the direction of its x-axis
    \(k_{dd}\): gain of pure pursuit controller, \(l_d = k_{dd}v_x(t)\)

    Recap: Pure Pursuit Control Law

    $$\delta_f(t) = tan^{-1}(\frac{2Lsin(\alpha(t))}{l_d}) = tan^{-1}(\frac{2Lsin(\alpha(t))}{k_{dd}v_x(t)})$$

    $$\delta_f(t) = tan^{-1}(\frac{2L}{l^2_d}e_{l_d}(t))$$

    Pure pursuit controller is a proportional controller of the front steering angle \(\delta_f\) operating on a crosstrack error \(e_{l_d}\) with some look-ahead distance \(l_d\) in front of the vehicle and having a gain of \(2L/l^2_d\).

    Characteristic

  • A short look-ahead distance provides more accurate tracking while a large \(l_d\) provides smoother tracking

  • \(k_{dd}\) value that is too small will cause instability and a \(k_{dd}\) value that is too large will cause poor tracking

  • High level of robustness: e.g. good handling on the discontinuity in the path

  • Demo

    Polaris GEM e4 – Pure Pursuit Path Tracker based on RTK GNSS/INS Localization

    Stanley Lateral Controller (Kinematic Bicycle Model)

    The Stanley controller uses the center of the front axle as a reference point. It looks at the error in heading and position relative to the closest point on the reference path. It defines an intuitive steering law to correct heading and position errors and obey max steering angle bounds.

    Stanley Controller Geometry

    \(\theta\): heading of vehicle or yaw angle of vehicle
    \(\dot{\theta}\): rotation rate of vehicle or yaw rate of vehicle
    \(\theta_{e}\): heading error
    \(\delta_f\): front steering angle, \(\delta_f \in [\delta_{min}, \delta_{max}]\)
    \(L\): wheelbase
    \(e\): crosstrack error
    \(k\): controller gain

    Recap: Stanley Control Law
    $$\delta_f(t) = \theta_e(t) + \delta_e(t) = \theta_e(t) + tan^{-1}(\frac{e(t))}{d(t)}) = \theta_e(t) + tan^{-1}(\frac{ke(t))}{v_f(t)})$$
    Recap: Stanley Controller Error Dynamics
    $$\dot e(t) = -\frac{kv_f(t)e(t)}{\sqrt{v_f^2(t) + (ke(t))^2}} = -\frac{ke(t)}{\sqrt{1+(\frac{ke(t)}{v_f(t)})^2}}$$ For small cross track error, it leads to exponential decay characteristics
    $$\dot e(t) \approx -k e(t) => e(t) = e(0)e^{-kt}$$ The error decays exponentially to 0. The decay rate is independent of vehicle speed and \(k\) is positive.

    Recap: Stanley Controller Adjustment
    $$\delta_f(t) = \theta_e(t) + \delta_e(t) = \theta_e(t) + tan^{-1}(\frac{ke(t))}{k_s + v_f(t)})$$
  • Inverse speed can cause numerical instability
  • Add positive softening constant to controller (\(k_s\) is tuned in field)

  • Recap: Stanley Controller Summary

  • Similar to the pure pursuit tracker, steady-state errors in curves at moderate speeds become significant.

  • Unlike pure pursuit, a well-tuned Stanley tracker will not cut corners, but rather overshoot turns. This effect can be attributed to not having a look-ahead.

  • The Stanley tracker can be over-tuned to a specific course in a similar manner because the only way it can overcome dynamic effects is with a high gain that may lead to instability on other paths.

  • Demo

    Frame 1 Image 1 Frame 1 Image 2


    LQR Tracker with Feed Forward Term (Dynamic Bicycle Model)

    Dynamic Bicycle Model

    \(\theta\): heading of vehicle or yaw angle of vehicle
    \(v\) and \(a\): velocity of the center of mass and acceleration of center of mass
    \(v_x\) and \(v_y\): longitudinal velocity and lateral velocity
    \(a_x\) and \(a_y\): longitudinal acceleration and lateral acceleration, \(a_y = {v_x^2}/{R} = \kappa v_x^2\)
    \(v_f\) and \(v_r\): velocity of front wheel and velocity of rear wheel
    \(F_{yf}\) and \(F_{yr}\): lateral force of front/rear tire, \(F_{yf}=[2]C_{\alpha f}\alpha_f\), \(F_{yr}=[2]C_{\alpha r}\alpha_r\)
    \(\alpha_f\) and \(\alpha_r\): slip angle of front/rear tire
    \(C_{\alpha f}\) and \(C_{\alpha r}\): cornering stiffness of front/rear tire
    \(l_f\) and \(l_r\): distance from front/rear wheel to the center of mass
    \(\theta_{vf}\) and \(\theta_{vr}\): velocity angle of front/rear tire
    \(\theta\): yaw angle in absolute coordinate
    \(\beta\): slip angle of the center of mass in vehicle body coordinate
    \(\theta+\beta\): heading angle in absolute coordinate
    \(e_d\): lateral error, \(e_d\) is positive when road is on the left side of the vehicle

    Recap: Bicycle Dynamic Model

    $$\sum F_y = m a_y = F_{yf}cos(\delta_f) + F_{yr}$$ $$\sum M = I \ddot{\theta} = F_{yf}cos(\delta_f) l_f – F_{yr} l_r$$ $$a_y = \frac{d^2y}{dt^2} = \ddot{y} + v_x\frac{v_x}{R}= \ddot{y} + v_x \dot{\theta} = \dot{v_y} + v_x \dot{\theta}$$ $$ma_y = C_{\alpha f}\alpha_f + C_{\alpha r}\alpha_r = m(\dot{v_y} + v_x \dot{\theta}) = C_{\alpha f} (\delta_f – \frac{\dot{\theta}l_f+v_y}{v_x}) + C_{\alpha r} (\frac{\dot{\theta}l_r-v_y}{v_x})$$ $$\dot{v_y} = \frac{C_{\alpha f}}{m} \delta_f + (\frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{m v_x} – v_x)\dot{\theta} – \frac{C_{\alpha f} + C_{\alpha r}}{m v_x} v_y$$ $$\ddot{\theta} = \frac{C_{\alpha f} l_f}{I} \delta_f – \frac{C_{\alpha f} l_f^2 + C_{\alpha r} l_r^2}{I v_x} \dot{\theta} + \frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{I v_x} v_y$$

    Recap: Linearized Bicycle Dynamic Model

    $$ \begin{bmatrix} \ddot{y} \\ \ddot{\theta} \\ \end{bmatrix} = \begin{bmatrix} – \frac{C_{\alpha f} + C_{\alpha r}}{m v_x} & \frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{m v_x} – {v_x} \\ \frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{I v_x} & – \frac{C_{\alpha f} l_f^2 + C_{\alpha r} l_r^2}{I v_x} \\ \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{\theta} \\ \end{bmatrix} % + % \begin{bmatrix} \frac{C_{\alpha f}}{m} \\ \frac{C_{\alpha f} l_f}{I} \\ \end{bmatrix} % \delta_f $$ $$ \begin{bmatrix} \dot{e}_d \\ \ddot{e}_d \\ \dot{e}_{\theta} \\ \ddot{e}_{\theta} \\ \end{bmatrix} = \begin{bmatrix} {0} & {1} & {0} & {0} \\ {0} & – \frac{C_{\alpha f} + C_{\alpha r}}{m v_x} & \frac{C_{\alpha f} + C_{\alpha r}}{m} & \frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{m v_x} \\ {0} & {0} & {0} & {1} \\ {0} & \frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{I v_x} & -\frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{I} & – \frac{C_{\alpha f} l_f^2 + C_{\alpha r} l_r^2}{I v_x} \\ \end{bmatrix} \begin{bmatrix} {e}_d \\ \dot{e}_d \\ {e}_{\theta} \\ \dot{e}_{\theta} \\ \end{bmatrix} $$ $$ + % \begin{bmatrix} {0} \\ \frac{C_{\alpha f}}{m} \\ {0} \\ \frac{C_{\alpha f} l_f}{I} \\ \end{bmatrix} % \delta_f % + % \begin{bmatrix} {0} \\ \frac{C_{\alpha r} l_r – C_{\alpha f} l_f}{m v_x} – {v_x} \\ {0} \\ – \frac{C_{\alpha f} l_f^2 + C_{\alpha r} l_r^2}{I v_x} \\ \end{bmatrix} % \dot{\theta}_r $$ $$ \dot{X} = AX + B_1 \delta_f + B_2 \dot{\theta}_r \quad where \quad X = \begin{bmatrix} {e}_d \\ \dot{e}_d \\ {e}_{\theta} \\ \dot{e}_{\theta} \\ \end{bmatrix} $$

    Recap: Discrete-time LQR

    $$ J = \sum_{k=0}^{\infty} X^T[k] Q X[k] + u[k]^T R u[k] \quad w.r.t. \quad x[k+1] = A_dx[k]+B_du[k] $$ where \(A_d = (I – \frac{Adt}{2})^{-1}(I + \frac{Adt}{2})\) and \(B_d = Bdt\)

    Riccati Equation
    $$ P_{k-1} = Q + A_d^TP_kA_d-A_d^TP_kB_d(R+B_d^TP_kB_d)^{-1}B_d^TP_kA_d $$ Feed Forward Term
    The state space model for the closed-loop system under state feedback
    $$ \dot{X} = AX + B_1 \delta_f + B_2 \dot{\theta}_r = (A- B_1)K X + B_2 \dot{\theta}_r $$ The closed-loop system with feedforward term \(\delta_{ff}\) can be written as $$ \dot{X} = AX + B_1 \delta_f + B_2 \dot{\theta}_r = (A- B_1)K X + B_1\delta_{ff} + B_2 \dot{\theta}_r $$ where \(u = \delta_f = -K_{1\times4}X_{4\times1} + \delta_{ff}\)

    Pretest demo
    Lateral Control – LQR, Longitudinal Control – PID

    Model Predictive Control (Dynamic Bicycle Model)

    Reference

    [1] Conlter, R. Craig. “Implementation of the Pure Pursuit Path’hcking Algorithm.” Camegie Mellon University (1992).
    [2] Hoffmann, Gabriel M., et al. “Autonomous automobile trajectory tracking for off-road driving: Controller design, experimental validation and racing.” 2007 American control conference. IEEE, 2007.
    [3] Snider, Jarrod M. “Automatic steering methods for autonomous automobile path tracking.” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08 (2009).


    Back to top of the page